If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2-16x-100=0
a = 35; b = -16; c = -100;
Δ = b2-4ac
Δ = -162-4·35·(-100)
Δ = 14256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14256}=\sqrt{1296*11}=\sqrt{1296}*\sqrt{11}=36\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-36\sqrt{11}}{2*35}=\frac{16-36\sqrt{11}}{70} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+36\sqrt{11}}{2*35}=\frac{16+36\sqrt{11}}{70} $
| 17=-9(x+4) | | -8=3n=4 | | 7.4=8(m+2.2) | | -18=-3y+6 | | -4m+10m-8=22 | | 2x+1/2x=28 | | x-4=4x+4-2 | | 2x+15=16+2x | | (180-8x)+55+3x=180 | | 1,190=x+20*17 | | 5x+9=208 | | 6k-5-9=35 | | 22+5(x+7)=57 | | 5(x+3)+22=57 | | 16/2*2x=4 | | 850=5(x+16) | | -2X+3=7x+4 | | 1/2(8x-8)=4x+6 | | 2/3(-3x+2)=16/21 | | 2x+3=9x= | | f-1.5/(-3.2)=-5 | | 8/2x=2 | | 9+3x=1/2918+6x) | | -5x+(-10)=35 | | 5x-15-2x+10=-2 | | (x+2)(x+3)(x+5)=30 | | 9^x+2*3^x-3=0 | | 7x-2=5x-18 | | a+3/9.05=8.2 | | 7x-2=5x-12 | | 25^x+2=125^x | | 21=9x+13 |